1.主供油系统(图4-5)
目的:在发动机从小负荷到大负荷时,使α随节气门开大而增大α↑,混合气由浓变稀,α由0.8→1.1
原理:降低主量孔处真空度
在主量孔和主喷管之间增设了通气管和空气量孔口
不工作时,通气管内油面与主喷管、浮子室油面是等高的。
小油门时,喉管真空度小,从主喷管喷出的油量较少,通气管内的油面下降不多。
油门增大,喉管真空度↑,由于主量孔比主喷管的流通截面小,汽油来不及从浮子室向主喷管补充,通气管内的油面就很快降低直到被吸净为止。这时,空气通过空气量孔流入通气管,并与主量孔出来的汽油一道从主喷口喷出,并在喷出前,空气和汽油已形成气泡,有利于汽化。
|
|
图4-5 |
2.怠速系统(图4-6)
目的:怠速时供给过浓混合气
结构上增设了怠速喷孔,过渡喷孔,怠速量孔,怠速空气量孔,怠速调整螺钉,怠速油道和限制螺钉。
怠速时,发动机转速低,节气门开度很小,节气门前方喉管处空气流速很低,真空度很小,不能吸出汽油或吸出的汽油很少,但节气门后面的真空度却很大,因此,怠速喷孔设在节气门的后面。汽油经怠速量孔经油道上升,同来自空气量孔以及过渡喷孔的空气混合成泡沫乳剂从怠速喷孔喷出,并受到节气门边缘气流的吹散。
怠速调整螺钉可以根据发动机具体情况调节混合气成分α。
怠速空气量孔的作用:
①怠速工况时,不过多地供给油量。
②防止怠速工作后停车(发动机不工作)产生虹吸作用,使汽油自动由浮子室经怠速喷口流出。
|
|
图4-6 |
当发动机由怠速过渡到承受一定负荷时,节气门逐渐开启,怠速喷孔处的真空度迅速降低,喷油量很快减少,而主喷管处真空度又不大,喷油量也不多,这时,混合气过稀,甚至使发动机熄火。为此,设置了过渡喷孔。
过渡喷孔的作用:
①使节气门开大时,发动机工作过渡圆滑,不致熄火。
②节气门开小时,起第二空气量孔的作用。
3.加浓系统(省油器)
由于主供油装置的作用,化油器供给的混合气是随负荷的增加而变稀的,即α↑,这就不能满足大负荷时加浓要求。为此,设置了加浓装置,在大负荷或全负荷时额外供油,保证全负荷时混合气浓度达到0.8~0.9,使发动机发出最大功率。加浓装置有机械式和真空式两种。
(1)机械式加浓装置(图4-7)
浮子室内装有加浓量孔和加浓阀,加浓量孔与主量孔并联,加浓阀上方有推杆与拉杆固连为一体,拉杆又通过摇臂与节气门轴相连。
当节气门开启时,摇臂转动,带动拉杆和推杆一同向下移动,只是在节气门开度达到80~85%
时,推杆才开始顶开加浓阀,于是汽油便从浮子室经加浓阀和加浓量孔流入主喷管,与主量孔来的汽油汇合,一起由主喷管喷出。使混合气加浓。
当节气门开度减小,拉杆与推杆上移,加浓阀在弹簧作用下关闭。
显然,这种加浓装置起作用的时刻只与节气门的位置有关,即只与负荷有关,而与发动机的转速无关。
|
|
图4-7 |
(2)真空式加浓装置(图4-8)
推杆与位于空气缸中的活塞连接,在推杆上装有弹簧,空气缸的下方借空气通道与喉管前面的空间连通,空气缸的上方有空气通道通到节气门后面。
在中等负荷时,节气门的开度不大,喉管前面的压力接近大气压,而节气门后面的压力则比大气压小很多(即活塞上部的压力),因此,在真空度的作用下,活塞压缩弹簧处于最上面的位置。这时,加浓阀被弹簧压紧在进油口上,真空式加浓装置不起作用。
在大负荷或全负荷时,节气门开度很大或接近全开,节气门后面的压力增大,则真空度减小,当它小于弹簧的张力时,活塞推杆就在弹簧的作用下下移,推开加浓阀,汽油便经加浓量孔流入主喷管,与主量孔来的汽油汇合,一起由主喷管喷出,起加浓作用。
|
|
图4-8 |
这种加浓装置的工作由节气门后面真空度的大小决定,而真空度的大小不仅和负荷和节气门开度有关,而且还和发动机曲轴转速有关。在同样节气门下,转速越高,真空度越大。
比较两种省油器:
① 机械式省油器在节气门开度大到一定程度时才起加浓作用,即只与节气门开度有关,而与转速无关。
② 真空式省油器起作用的时刻完全取决于节气门后面的真空度,因此,它与节气门的开度,汽油机的转速都有关系。
③ 真空式省油器在负荷小,转速低时也能起加浓作用。
4.加速装置(加速泵)(图4-9)
汽车在一定的使用条件下,需要加速前进或超车时,就要急速地加大节气门开度,使发动机功率迅速增大,此时,要求供给浓混合气。但是由于简单化油器在节气门突然开大时,短时间内气缸中混合气会变得过稀,不但不能加速,反而还可能灭火,为了解决这一矛盾,化油器上增设了加速装置。
加速泵的作用就是在节气门突然开大时,及时加浓混合气,以适应汽油机加速的需要。
在浮子室内有一泵缸,泵缸内有活塞,活塞通过活塞杆及弹簧,连接板与拉杆相连。拉杆由固装在节气门轴上的摇臂操纵,加速泵腔与浮子室之间装有进油阀,泵腔与加速量孔之间油道中装有出油阀。进油阀在不加速时,在本身重力作用下,经常开启和关闭不严,而出油阀则靠重力经常保持关闭,只有在加速时方能开启。
当节气门开度减小时,摇臂逆时针回转,带动拉杆、连接板、活塞杆及活塞向上移动,泵腔内产生真空度,汽油便自浮子室经进油阀充入泵腔。
当一般地增加负荷,即节气门缓慢地开大时,活塞便缓慢地下降,泵腔内形成的油压不大,进油阀在自动重力的作用下处于开启或关闭不严状态,于是,汽油又通过进油阀流回浮子室,加速装置并不起作用。
|
|
图4-9 |
但当节气门迅速地开大时,由于活塞下移很快,泵腔油压迅速增大,使进油阀关闭,同时顶开出油阀,泵腔内所贮存的汽油便从加速量孔喷入喉管内,加浓混合气。
这种加浓作用只是一时的,当节气门停止运动后,即使保持的开度很大,加速泵也不再供油。
发动机转速升高后,加速喷管处真空度较高,可能将出油阀吸开而使加速装置不适时地喷油。为解决这一问题,可以使加速油道经通气道与浮子室相通,使油道中真空度降低。
5.起动装置(图4-10)
目的——在冷车起动时,供给极浓的混合气。α=0.2~0.6
结构上是在喉管前装一个阻风门,用弹簧保持它经常处于全开位置。
起动时,关闭阻风门,一方面减少了进入化油器的空气量,另一方面又提高了阻风门后面空腔的真空度,使得主供油系统和怠速系统都供油,获得极浓的混合气易起动。
发动机热态起动时,所需混合气比冷态时稀,故只须将阻风门半闭即可。
|
|
图4-10 |
|